G-CSF treatment of severe congenital neutropenia reverses neutropenia but does not correct the underlying functional deficiency of the neutrophil in defending against microorganisms.

نویسندگان

  • Marta Donini
  • Stefania Fontana
  • Gianfranco Savoldi
  • William Vermi
  • Laura Tassone
  • Francesca Gentili
  • Elena Zenaro
  • Daniela Ferrari
  • Lucia D Notarangelo
  • Fulvio Porta
  • Fabio Facchetti
  • Luigi D Notarangelo
  • Stefano Dusi
  • Raffaele Badolato
چکیده

The treatment of children affected by severe congenital neutropenia (SCN) with G-CSF strongly reduces the risk of sepsis by reversing neutropenia. However, SCN patients who respond to the treatment with the growth factor still have an elevated risk of succumbing to sepsis. Because the disease is usually caused by heterozygous mutations of ELA2, a gene encoding for neutrophil elastase (NE), we have investigated in G-CSF-responder and nonresponder patients affected by SCN the expression of polypeptides that constitute the antimicrobial machinery of these cells. In peripheral blood-derived neutrophils of patients with heterozygous mutations of ELA2 who were treated with G-CSF, NE was nearly absent as detected by immunofluorescence and immunoblotting, suggesting that production of the mutant protein interferes with normal gene expression. This defect was associated with abnormal expression of other granule-associated proteins such as myeloperoxidase, lactoferrin, cathepsin G, and human-neutrophil-peptide. Moreover, in one patient with partial response to G-CSF, we observed an impairment of neutrophil antimicrobial activity against Candida albicans, and, to a lower extent against Escherichia coli. Thereby, we propose that the treatment with G-CSF is not sufficient to correct all of the functional deficiency of neutrophils, and this might account for the consistent risk of infections observed in SCN patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prognostic significance of high-level FLT3 expression in MLL-rearranged infant acute lymphoblastic leukemia.

2007;39:86-92. 3. Person RE, Li FQ, Duan Z, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34:308-312. 4. Donini M, Fontana S, Savoldi G, et al. G-CSF treatment of severe congenital neutropenia reverses neutropenia but does not correct the underlying functional deficiency of the neutrophil in defending against microorganisms. Blood. 2007;109:471...

متن کامل

Evaluation and management of patients with isolated neutropenia.

Neutropenia, defined as an absolute neutrophil count (ANC) <1.5 × 10(9)/L, encompasses a wide range of diagnoses, from normal variants to life-threatening acquired and congenital disorders. This review addresses the diagnosis and management of isolated neutropenia, not multiple cytopenias due to splenomegaly, bone marrow replacement, or myelosuppression by chemotherapy or radiation. Laboratory ...

متن کامل

Congenital neutropenia: diagnosis, molecular bases and patient management

The term congenital neutropenia encompasses a family of neutropenic disorders, both permanent and intermittent, severe (<0.5 G/l) or mild (between 0.5-1.5 G/l), which may also affect other organ systems such as the pancreas, central nervous system, heart, muscle and skin. Neutropenia can lead to life-threatening pyogenic infections, acute gingivostomatitis and chronic parodontal disease, and ea...

متن کامل

Neutrophil elastase enzymatically antagonizes the in vitro action of G-CSF: implications for the regulation of granulopoiesis.

There is evidence that neutrophil production is a balance between the proliferative action of granulocyte-colony-stimulating factor (G-CSF) and a negative feedback from mature neutrophils (the chalone). Two neutrophil serine proteases have been implicated in granulopoietic regulation: pro-proteinase 3 inhibits granulocyte macrophage-colony-forming unit (CFU-GM) growth, and elastase mutations ca...

متن کامل

Genistein protects hematopoietic stem cells against G-CSF-induced DNA damage.

Granulocyte colony-stimulating factor (G-CSF) has been used to treat neutropenia in various clinical settings. Although clearly beneficial, there are concerns that the chronic use of G-CSF in certain conditions increases the risk of myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML). The most striking example is in severe congenital neutropenia (SCN). Patients with SCN develop M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 109 11  شماره 

صفحات  -

تاریخ انتشار 2007